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ABSTRACT

The main limitation of the original demons image registration

algorithm is the need to ensure that the grey level of corre-

sponding voxels remains the same in both the images to reg-

ister. This difficulty may be overcome by the use of more

robust similarity measures, whenever they may be expressed

as the sum over the entire image of a local energy. We demon-

strate the convenience of a local optimisation strategy of this

energy instead of the optimisation of the global metric, and

suggest a methodology for the use of more general similarity

measures.

Index Terms— Image registration, biomedical imaging

1. INTRODUCTION

The demons algorithm was first introduced in [1] as an anal-

ogy with a thermodinamics paradox known as Maxwell’s

demons. It relies on the assumption that the grey level of cor-

responding voxels remains the same when the images are de-

formed, and tries to align the isocontours on both the images

to register. This behaviour is implemented following the op-

tical flow equations to compute a deformation field, which is

further regularised by convolving it with a Gaussian kernel.

Demons-like algorithms have been succesfully applied to

a wide variety of problems, such as US sequence tracking [2],

US-MRI brain images corregistration [3], or even DT-MRI

registration [4]. Moreover, the demons approach has been

proved to be closely related to most of the registration algo-

rithms based on dense deformation fields, such as optical flow

[1], elastic body [5] and viscous fluid [6] models, or Iterative

Closest Point [1], and a number of studies have been carried

out to further improve its performance as well as to overcome

its limitations.

In [7] it is demonstrated that the optical flow equation is

equivalent to a Levenberg-Marquardt (LM) optimisation of

the Mean Squared Difference (MSD) between the images to

register; the dual formulation in [1], based either on the gra-

dient of the fixed image or the gradient of the moving image,

may be seen in such a way as a symmetric problem, depend-

ing on wether the deformation is applied to the fixed or the
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moving image. For the problem to be physically consistent,

it is stated that both two approaches should be approximately

equivalent. The main limitation of classical demons is the as-

sumption that the grey levels of corresponding voxels do not

vary from one image to the other. To overcome this draw-

back, in [8] a generalisation of the equation in [7] is obtained,

so that the global similarity measure is defined as the sum of

a local measure over the entire domain of the images, being

the gradient of the moving image substituted by the gradient

of the metric. When the local metric is the MSD, the equation

reduces to the LM algorithm; for other metrics, the equiva-

lency does not hold.

The estrategy followed in [8] consist in the use of a Lo-

cal Correlation Coefficient (LCC), where the required local

mean values and variances are computed as convolutions with

Gaussian kernels. Then, the algorithm no longer needs the

grey level to be the same in corresponding voxels, but instead

it is enough that a linear relation between them holds. The

computation of the gradient of the similarity measure is done

in [8] in a global sense, which is, it is computed as the deriva-

tive of the global metric with respect to the displacement field.

Given the complexity of the resulting equation, it is simplified

by considering the Gaussian kernel narrow enough to neglect

its effect. Although the results obtained with this approxi-

mation are systematically better than those for the original

equation, a satisfactory explanation cannot be found in [8].

In this paper we demonstrate that the expression given in

[8] is not only an approximation, but it corresponds instead to

a parallel way in which the optical flow equation may be gen-

eralised. It is proved as well that this second methodology is a

more adequate approach in cases of local, irregular deforma-

tions, and for global, smoother ones too. We also introduce a

new local metric based on normalised MSD (NMSD), which

shows better local behaviour than LCC while it still over-

comes the limitation of MSD; its better performance when

local derivatives are used suggests the validity of our work for

more general problems, for instance with multimodal metrics.

In Section 2 we analyse the approach in [8], and we prove

the equivalence of the approximate derivative given there with

a different methodology based on local derivatives. In Section

3 we introduce the NMSD, compared to MSD and LCC. Sec-

tion 4 is devoted to experimentally test the approaches here

compared. Finally, in Section 5, we draw some final remarks

and conclude.
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2. GENERALISATION OF THE LM APPROACH

The optical flow formulation given in [1], involving the gradi-

ent of both the fixed and the moving image, has been proved

to be equivalent to an LM optimisation of the MSD [7]. Fur-

thermore, considering only the gradient of the moving image,

an equivalent equation is given in [8]:

�v[x] =
2E[x]

‖∇E[x]‖2 + 4λE[x]
∇E[x], (1)

where �v[x] is the updating rule for the deformation field �u[x],
say �v[x] = d�u[x]/dt, λ is the LM parameter, and E[x] is the

locally defined similarity measure; in the case of the MSD, it

is simply E[x] = (I[x]−J [x])2, where I stands for the fixed

image and J for the moving image deformed with the current

deformation field �u, so that MSD =
∑

x E[x]. In [8] the LCC

is used instead, and so the metric reads:

LCC =
∑

x

E[x] =
∑

x

I[x]J [x]− Ī[x]J̄ [x]
σI [x]σJ [x]

, (2)

where Ȳ denotes the mean value of Y . All mean values and

statistics are computed as local spatial averages, e. g. Ī[x] =∑
s Gη[x − s]I[s], with Gη a Gaussian kernel with isotropic

variance η2. The need to compute∇E in eq. (1) is fulfilled in

[8] by computing the derivatives of LCC with respect to the

displacement field, and then we have, [8, eq. (2)]:

∂LCC

∂�u[x]
=
(

I[x]Gη∗ 1
σIσJ

[x]− J [x]Gη∗ IJ − Ī J̄

σIσ3
J

[x]

+Gη∗
((

IJ − Ī J̄
)
J̄

σIσ3
J

− Ī

σIσJ

)
[x]

)
∇J [x].(3)

On the other hand, we compute in what follows the deriva-

tives of the local energy (similarity measure) E[x] with re-

spect to the displacement field, and so, from eq. (2):

∂E[x]
∂�u[x]

=
∂

∂�u[x]

∑
s Gη[x− s]I[s]J [s]− Ī[x]J̄ [x]

σI [x]σJ [x]

=
Gη[0]I[x]
σI [x]σJ [x]

∇J [x]− Ī[x]
σI [x]σJ [x]

∂J̄ [x]
∂�u[x]

−1
2

I[x]J [x]− Ī[x]J̄ [x]
σI [x]σ3

J [x]
∂σ2

J [x]
∂�u[x]

=
Gη[0]I[x]
σI [x]σJ [x]

∇J [x]− Ī[x]Gη[0]
σI [x]σJ [x]

∇J [x]

− E[x]
2σ2

J [x]
∂

∂�u[x]

(∑
s

Gη[x− s]J2[s]− J̄2[s]

)

=
Gη[0]I[x]
σI [x]σJ [x]

∇J [x]− Ī[x]Gη[0]
σI [x]σJ [x]

∇J [x]

− E[x]
2σ2

J [x]
2Gη[0]J [x]∇J [x]

+
E[x]

2σ2
J [x]

2Gη[0]J̄ [x]
∂

∂�u[x]

∑
s

Gη[x− s]J [s]

=
Gη[0]

σI [x]σJ [x]
(
I[x]− Ī[x]

)∇J [x]

− E[x]
σ2

J [x]
Gη[0]

(
J [x]− J̄ [x]

)∇J [x], (4)

given that ∂J [s]/∂�u[x] = δ[x − s]∇J [x]. Bearing in mind

the definition of E[x] in eq. (2), we get:

∂E[x]
∂�u[x]

=
Gη[0]

σI [x]σJ [x]

((
I[x]− Ī[x]

)

− (J [x]−J̄ [x]
) I[x]J [x]−Ī[x]J̄ [x]

σ2
J [x]

)
∇J [x], (5)

which is identical to [8, eq. (3)] except for the term Gη[0].
The meaning of this result is that in fact eq. (5) is not only

an approximation to the derivative of the global LCC simi-

larity measure given in eq. (3) for narrow Gaussian kernels,

as claimed in [8]. It corresponds instead to the derivative of

the local energy function, and therefore it drives to a different

way to generalise eq. (1). In the case of the MSD, it is trivial

to show that both two methodologies gives the same approach

(the LM equation), since the local energy for MSD depends

only on the voxel of interest x. For any other local energy

depending on the vicinity of x, this will not be the case.

As a final remark, let us make explicit the time dependen-

cies; the local energy at each image voxel and time step is a

function of the value of both images to register at this partic-

ular place and instant, i. e. E[x, t] = f(I[x], J [x, �u[x, t]]) =
g[�u[x, t]]. The time dependency of the local energy relies on

the fact that the moving image J evolves with time following

the deformation given by �u, which in turn is updated at each

time step with the correction term �v. Then, we have:

dE[x]
dt

=
dg[�u[x, t]]

dt
= ∇tg[�u[x, t]]

d�u[x, t]
dt

= ∇tE[x]�v[x] =
2‖∇E[x]‖2E[x]

‖∇E[x]‖2 + 4λE[x]
. (6)

For those image locations where ‖∇E[x]‖2 � 4λE[x]
(note that the LM regularisation parameter λ should be small),

eq. (6) reduces to dE[x]/dt = C · E[x], whose solution is

an increasing exponential function that stops growing when

the optimum is reached and ‖∇E[x]‖2 � 4λE[x] does not

hold. Although eq. (1) is applied in [8] in a heuristic way, it

yields a very fast rate of convergence with an adequate sim-

ilarity measure. Note that this is only valid in case the local

derivative is used, which is a clear reason that favours the

use of the methodology presented in our paper, together with

the simpler mathematical expression of �v[x]. On the other

hand, note that LCC must be maximised, as opposed to MSD,
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for which a minus sign in eq. (1) is needed and we have

dE[x]/dt = −C · E[x], with an exponential decrease; it ex-

plains why the same expression of MSD stands for LCC.

3. NORMALISED MEAN SQUARED DIFFERENCE

The LCC is able to cope with varying grey levels, which is

a clear advantage compared to the MSD. However, as it was

showed in the previous section, the computation of statistics

carries out a worsening of the local behaviour. For two ran-

dom variables I and J , it is trivial to show that the normalised

correlation relates to the expected value of the MSD between

normalised versions of the original I and J , which is:

CC(I, J) =
IJ − Ī J̄

σIσJ
= 1− 1

2

(
I − Ī

σI
− J − J̄

σJ

)2

. (7)

The normalisation of I and J yields transformed random

variables Ĩ and J̃ with zero mean and unit variance, which

makes this similarity measure robust against linear changes

in the grey levels. In this context, the expected values must

be seen as local spatial averages which are responsible that

the LCC is not perfectly local. Such averages are strictly nec-

essary to compute local statistics of the images, but we can

avoid the local smoothing due to the computation of the av-

erage of the normalised MSD. This way, we introduce the

normalised MSD, including now the spatial dependencies, as:

NMSD =
∑

x

(
I[x]− Ī[x]

σI [x]
− J [x]− J̄ [x]

σJ [x]

)2

. (8)

Like in eq. (4) to (5), it can be easily proved that the

derivative of the local energy for this metric follows:

∂E

∂�u
= −2

√
E

σJ

(
1−Gη[0]−Gη[0]

(
J − J̄

σJ

)2
)
∇J, (9)

where we have obviated any dependency with x. The deriva-

tive of the global measure, ∂NMSD/∂�u[x], is slightly more

complicated, involving convolution terms like in [8], and is

not depicted here, but its computation is straightforward as

well. Due to the normalisation of the images, NMSD is able

to deal with linear changes in the grey level of the images,

but it is slightly more local than LCC, being a compromise

between LCC and the classical MSD.

4. RESULTS

To test the proposed methodology, we have used the pub-

lic BrainWeb database1 [9]. It comprises 20 3D anatomical

models of a normal human brain, together with T1 MRI re-

alistic simulations for 19 up of the 20 models. Three sets

1http://www.bic.mni.mcgill.ca/brainweb/

of experiments have been designed. To test the accuracy of

the algorithm in cases of irregular or very localised deforma-

tions, we first use one of the T1 volumes (case 04) as target

-fixed- image, and then we register each of the remaining 18

volumes using them as template -moving- images (E1). As

in [8], we design a second experiment E2 in which a linear

bias is introduced in the target image (case 04), in order to

test the robustness against variations of the grey level, and

then we repeat the previous methodology. The bias is intro-

duced by adding a correction ranging from 0 in the top-left

corner of the first slice to 150 in the bottom-right of the last

one, and then normalising the intensities in the range [0, 255].
Finally, to test the behaviour against smoother deformations,

we have designed a third experiment E3 in which we only use

case 04: we place 27 landmarks uniformly distributed over the

181×217×181 volume, and generate random displacements

that are later on interpolated with a Thin Plate Spline (TPS),

so that the achieved deformation has mean values near 5 vox-

els (5 mm.) and maximum values near 12 voxels (12 mm.).

We generate 18 random deformations of case 04 with no bias.

To measure the performances, we can use the euclidean
error E committed only in the third experiment. The MSD
with respect to the unbiased T1 target may be computed in all

cases. Besides, taking advantage of the golden standard seg-

mentation provided by the anatomical models, we may use the

Jaccard overlap measure S to account for the misalignment of

corresponding tissues on both of the images:

S =
1
M

∑
x∈Z

Ω (MI [x], MJ [x]) , (10)

where MI , MJ are the anatomical models giving the kind

of tissue at location x, and Ω is an indicator, whose value

is 0 if MI [x] = MJ [x] and 1 otherwise. The sum is done

over a strip Z of 9 voxels width, containing all the interfaces

between the tissues, a total of M voxels. We do so to obtain

a more distinctive measure that accounts for the overlap only

near the borders of the tissues, since otherwise the overlap of

large, homogeneous tissues could bias the result.

We have tested 5 algorithms: one for the MSD measure,

two for LCC with local -LCCl- and global -LCCg- computed

derivatives and, respectively, NMSDl and NMSDg . In all

cases, we empirically set η = 4.1 mm., and used a multirres-

olution scheme with 3 levels and 20 iterations per level. The

deformation field was regularised at each step with a Gaus-

sian kernel with σ = 0.80 mm. The results, averaged over the

18 experiments for each case, are shown in Table 1.

First of all, note that all performance measures agree in

determine which metric is better than one another in all cases.

Without bias, they may be ordered, from the best to the worst,

as: MSD, NMSDl, LCCl, NMSDg , and LCCg . When we

apply the bias, the MSD completely fails to register the im-

ages, but the LCC and NMSD show a performance very close

to the unbiased case. Moreover, the previous order holds in-

dependently on the kind of deformation: the more local the
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E1 MSD LCCl LCCg NMSDl NMSDg

MSD 16.4 21.2 28.9 19.8 27.6

S 0.345 0.359 0.417 0.356 0.406

E2 MSD LCCl LCCg NMSDl NMSDg

MSD 37.6 21.2 28.9 19.8 27.6

S 0.601 0.359 0.416 0.356 0.405

E3 MSD LCCl LCCg NMSDl NMSDg

MSD 8.3 10.2 17.1 10.0 15.2

S 0.185 0.214 0.319 0.204 0.296

E (mm.) 0.619 1.40 2.37 1.13 2.12

Table 1. MSD and S for the inter-patient experiments, both

without (E1) and with bias (E2), and for the synthetic defor-

mations (E3). In E3, E can also be measured.

similarity measure and the computed derivative, the better the

performance, both for smooth, global deformations and for

very localised ones. The heavy difference between local and

global derivatives, consistently with eq. (6), demonstrate the

usefulness of our approach, and completely justifies the pre-

vious results in [8], which have been proved to generalise for

other metrics than LCC and for a 3D case as well. On the

other hand, the difference between NMSD and LCC is not so

important; the computation of local statistics worsens the lo-

cality of NMSD, whose behaviour is far from the MSD. An

example of the performance for E2 is shown in Fig. 1.

5. CONCLUSION

We have presented a methodology for the generalisation of

the optical flow equation with non-MSD metrics. At the sight

of the results, we may conclude that the use of local similarity

measures combined with local optimisation rules drives not

only to more simple equations (and therefore to more com-

putationally efficient algorithms), but it also increases the ac-

curacy of the registration, which is, the more the locality, the

better the performance. On the other hand, it is necessary to

achieve a trade-off between the locality of the metric and its

robustness against changes in the grey levels. In this sense, we

intend to use this result to extend the demons algorithm to the

multimodal case; the main difficulty in this task is the need to

define an adequate local similarity measure suitable for mul-

timodal registration, since a functional relation between grey

levels more general than a linear correspondence (like with

LCC and NMSD) requires more robust metrics.
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